Output Feedback Control Design with Guaranteed Cost for Fuzzy Bilinear Time-Delay Systems

نویسندگان

  • Ryutaro Takada
  • Yuzu Uchida
  • Jun Yoneyama
  • J. Yoneyama
چکیده

Abstract This paper is concerned with observer-based guaranteed cost control design of fuzzy bilinear systems with time-varying delay. First, we consider the state feedback control design by assuming a special form of a fuzzy controller. A delay-dependent condition, which is less conservative than delay-independent one, for guaranteed cost control design of fuzzy bilinear systems with time-varying delays is given in terms of linear matrix inequality (LMI). Next, we consider a fuzzy observer design for the same class of systems, and propose an observer design method based on another delay-dependent condition. Then, we show that state feedback controller and observer make a stabilizing observer-based output feedback controller with guaranteed cost. Finally, we give a numerical example to illustrate our design procedures and to show the effectiveness of our approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NON-FRAGILE GUARANTEED COST CONTROL OF T-S FUZZY TIME-VARYING DELAY SYSTEMS WITH LOCAL BILINEAR MODELS

This paper focuses on the non-fragile guaranteed cost control problem for a class of T-S fuzzy time-varying delay systems with local bilinear models. The objective is to design a non-fragile guaranteed cost state feedback controller via the parallel distributed compensation (PDC) approach such that the closed-loop system is delay-dependent asymptotically stable and the closed-loop performance i...

متن کامل

ADAPTIVE FUZZY OUTPUT FEEDBACK TRACKING CONTROL FOR A CLASS OF NONLINEAR TIME-VARYING DELAY SYSTEMS WITH UNKNOWN BACKLASH-LIKE HYSTERESIS

This paper considers the problem of adaptive output feedback tracking control for a class of nonstrict-feedback nonlinear systems with unknown time-varying delays and unknown backlash-like hysteresis. Fuzzy logic systems are used to estimate the unknown nonlinear functions. Based on the Lyapunov–Krasovskii method, the control scheme is constructed by using the backstepping and adaptive techniqu...

متن کامل

Non-fragile Guaranteed Cost Control of T-s Fuzzy Time-varying Delay Systems with Local Bilinear Models

This paper focuses on the non-fragile guaranteed cost control problem for a class of T-S fuzzy time-varying delay systems with local bilinear models. The objective is to design a non-fragile guaranteed cost state feedback controller via the parallel distributed compensation (PDC) approach such that the closed-loop system is delay-dependent asymptotically stable and the closed-loop performance i...

متن کامل

Non-Fragile Guaranteed Cost Control of Nonlinear Systems with Different State and Input Delays Based on T-S Fuzzy Local Bilinear Models

This paper focuses on the non-fragile guaranteed cost control problem for a class of TakagiSugeno (T-S) fuzzy time-varying delay systems with local bilinear models and different state and input delays. A non-fragile guaranteed cost state-feedback controller is designed such that the closed-loop T-S fuzzy local bilinear control system is delay-dependent asymptotically stable, and the closed-loop...

متن کامل

Stability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay

In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013